바로가기 메뉴
본문 바로가기
푸터 바로가기
TOP

사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로

사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로

저자

박문서, 성기훈, 이현수, 지세현, 김수영

저널 정보

한국건설관리학회논문집, Vol.11, No.4, pp.22-31

출간연도

2010-07

Because the estimated cost at early stage has great influence on decisions of project owner, the importance of early cost estimation is increasing. However, it depends on experience and knowledge of the estimator mainly due to shortage of information. Those tendency developed into case-based reasoning(CBR) method which solves new problems by adapting previous solution to similar past problems. The performance of CBR model is affected by attribute weight, so that its accurate determination is necessary. Previous research utilizes mathematical method or subjective judgement of estimator. In order to improve the problem of previous research, this suggests CBR schematic cost estimation method using genetic algorithm to determine attribute weight. The cost model employs nearest neighbor retrieval for selecting past case. And it estimates the cost of new cases based on cost information of extracted cases. As the result of validation for 17 testing cases, 3.57% of error rate is calculated. This rate is superior to accuracy rate proposed by AACE and the method to determine attribute weight using multiple regression analysis and feature counting. The CBR cost estimation method improve the accuracy by introducing genetic algorithm for attribute weight. Moreover, this makes user understand the problem-solving process easier than other artificial intelligence method, and find solution within short time through case retrieval algorithm.

프로젝트 초기단계에서 산정된 공사비는 발주자의 중요한 의사결정에 영향을 미치므로 그 중요성이 강조되고 있지만, 정보의 부족으로 인하여 주로 견적전문가의 경험과 지식에 의존하여 진행된다. 이것은 현재 문제와 가장 유사한 과거 사례를 선택하여 사용하는 사례기반추론으로 발전되었다. 사례기반추론 모델의 예측 성능은 속성 가중치의 산정 결과에 많은 영향을 받으므로, 정확한 속성 가중치의 산정이 요구된다. 기존의 연구는 수학적 방법 또는 전문가의 주관적 판단을 이용하는 방법을 사용한다. 본 연구는 기존 연구의 문제점을 보완하기 위해 유전자 알고리즘을 이용한 사례기반추론 공사비 예측 모델을 제안한다. 공사비 예측 모델은 최근이웃 조회 방법의 과정에 의해 추출한 사례의 공사비 정보를 이용하여 예측 대상의 공사비를 산정한다. 검증 결과 AACE에서 정의한 견적시기별 예측 정확도와 표준화 회귀계수 동일가중치를 사용한 방법보다 높은 오차율을 나타내었다. 따라서 본 연구는 유전자 알고리즘을 도입하여 예측 성능을 향상시키고, 사례기반추론 방법을 사용하여 사용자가 이해하기 용이한 해결책 도출과정을 제시하였다는데 그 의미가 있다.